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ABSTRACT
The proposed NASA Deformation, Ecosystem Structure and
Dynamics of Ice (DESDynI) mission would be a first-of-
breed endeavor that would fundamentally change the paradigm
by which Earth Science data systems at NASA are built.
DESDynI is evaluating a distributed architecture where ex-
pert science nodes around the country all engage in some
form of mission processing and data archiving. This is com-
pared to the traditional NASA Earth Science missions where
the science processing is typically centralized. What’s more,
DESDynI is poised to profoundly increase the amount of
data collection and processing well into the 5 terabyte/day
and tens of thousands of job range, both of which comprise
a tremendous challenge to DESDynI’s proposed distributed
data system architecture. In this paper, we report on a set
of architectural trade studies and benchmarks meant to in-
form the DESDynI mission and the broader community of
the impacts of these unprecedented requirements. In par-
ticular, we evaluate the benefits of cloud computing and
its integration with our existing NASA ground data system
software called Apache Object Oriented Data Technology
(OODT). The preliminary conclusions of our study suggest
that the use of the cloud and OODT together synergistically
form an effective, efficient and extensible combination that
could meet the challenges of NASA science missions requir-
ing DESDynI-like data collection and processing volumes at
reduced costs.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Design
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1. INTRODUCTION
DESDynI, identified as one of four tier-1 Earth Decadal

Survey Missions in the National Research Council (NRC)
Earth Science Decadal Survey [4], would be a five-year L-
band InSAR and Multibeam Lidar mission [1] with objec-
tives to produce interferometry at high resolution, that would
be combined into deformation maps, and other higher or-
der science data files (called “products”) for use in identify-
ing land surface changes and hazards, and in understanding
Earth’s climate [7].

DESDynI is expected to increase the amount of data col-
lection and processing well into the 5 terabyte/day and tens
of thousands of job range. We report, in this paper, on a
set of architectural trade studies and benchmarks meant to
inform the DESDynI mission and the broader community
of the impacts of these unprecedented requirements. We
evaluate the benefits of cloud computing and its integra-
tion with our existing NASA science data system software
called Apache OODT. The findings of our study suggest that
OODT and the cloud form an effective, efficient and exten-
sible combination that can meet the challenges of NASA
science missions.

This proposed architecture is in stark contrast to the cen-
trally managed NASA science processing systems of most
current Earth Science missions. DESDynI’s ground data
system would leverage the NASA Jet Propulsion Labora-
tory (JPL) architecture and associated implementation in-
frastructure called the Process Control System or PCS. PCS
is becoming a common terminology in the NASA Earth Sci-
ence mission world and it refers to the configured and de-
ployed set of software components that comprise the OODT
framework’s [9] Catalog and Archive Service (CAS) [10]. To
date, OODT’s support of Earth Science missions has tradi-
tionally focused on supporting a centralized processing ap-
proach which includes NASA’s Atmospheric Carbon Obser-
vations from Space (ACOS), Orbiting Carbon Observatory
(OCO-2) [10] and the proposed Soil Moisture Active Pas-
sive (SMAP) [15] missions, and the NPOESS Preparatory
Project’s Sounder PEATE [10] mission and the Atmospheric
Carbon Observations from Space (ACOS) system used to
analyze the Japanese GOSAT data.

At JPL, we have begun a study evaluating the architec-
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tural benefits and tradeoffs of the proposed DESDynI sci-
ence data system approach. Our study has three high level
goals/objectives: (1) obtaining benchmarking and results in
the area of job throughput, metadata extraction time, in-
gestion time, and processing time; (2) evaluating the PCS’s
ability to support the planned DESDynI data pipelines; and
(3) evaluating the PCS as it would be deployed for DESDynI
in the context of cloud computing. There is a growing inter-
est in the adoption of cloud computing for scientific software
applications [16, 8, 6] due to the cloud’s elasticity and scal-
ability, two properties that traditionally escape the rigidity
of existing NASA science data system software.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses the background and related work on DES-
DynI, science data processing systems, Apache OODT and
PCS. Section 3 describes the proposed DESDynI data sys-
tem architecture. Section 4 explains our experiment con-
figuration and objectives. Section 5 analyzes the result of
our experiment and discusses our findings. Finally, section 6
summarizes our experience and points to future work.

2. BACKGROUND AND RELATED WORK
We provide a brief background on the proposed mission

objectives for DESDynI which suggest cloud computing as a
viable option to meet some of its challenging demands. Ad-
ditional background and related efforts in evaluating cloud
computing are then described. We round out the section
with an explanation of Apache OODT, and the JPL Pro-
cess Control System architecture as applied to the proposed
DESDynI mission.

2.1 DESDynI
DESDynI is one of four tier-1 Earth Decadal Survey Mis-

sions identified in the National Research Council (NRC)
Earth Science Decadal Survey [4]. DESDynI, as proposed,
would be a five-year L-band InSAR and Multibeam Lidar
mission [1] with objectives to:

1. Determine the likelihood of earthquakes, volcanic erup-
tions, and landslides.

2. Predict the response of ice sheets to climate change
and impact on sea level.

3. Characterize the effects of changing climate and land
use on species habitats and carbon budget.

4. Understand the behavior of subsurface reservoirs

DESDynI is currently undergoing its pre-mission study
and preliminary analysis of its proposed mission objectives
points to tremendous data volume challenges. Radar ex-
pects to collect upwards of 4.9TB (terabytes) of raw radar
signal data a day from which approximately some 16PB
(petabytes) of data products will be generated per year at
a rate of about 44 TB/day. DESDynI’s projected nominal
processing and data ingest cycle make it a strong candidate
for the compute and storage services provided by cloud com-
puting. We will provide some context on the subject of cloud
computing below.

2.2 Cloud Computing
Cloud computing is the terminology used to refer to canon-

ical services for data processing and storage whose scalabil-
ity and elasticity are dictated by predictable costing models

and levels of service [8]. For the purposes of our work on the
proposed DESDynI mission, we are looking at the cloud as
a provider for data storage scale-up, during nominal daily
processing or reprocessing campaigns, and in addition, as a
set of extra CPUs and cores that could be leveraged to speed
up DESDynI data pipelines and job throughput.

There are a number of parallel research efforts explor-
ing the performance and effectiveness of cloud computing.
These include Cumulus studies, where Vrable et al. exam-
ined performance and overhead cost for thin- and thick-cloud
layers as a storage and backup system [14]. In in other ar-
chitecture studies, Vogels studied the offsetting tradeoffs be-
tween consistency and availability at Amazon’s cloud [12].
Voicu et al. [13] suggested that the cloud is an extension
or re-work of the Grid middleware infrastructure. Our own
work within DESDynI is geared towards evaluating the cloud
as a low level platform to increase DESDynI’s job processing
scalability and its data storage capacity, at low costs.

In the next section, we will provide background informa-
tion regarding the underlying software platform that DES-
DynI would leverage to perform job execution and data stor-
age and ingestion: Apache OODT [9].

Figure 1: The PCS canonical processing architec-
ture. FM stands for “file manager”, WM for “work-
flow manager”, RM for “resource manager”, p for
“product”, m for “metadata”. The yellow enclos-
ing “egg” around the PGEs is CAS-PGE, the PCS
“wrapper”, which feeds the PGE the necessary in-
formation from the FM, WM and RM

2.3 Apache OODT and PCS
Apache OODT [9] is a software framework that provides

sets of components useful in two fundamental areas: (1)
information integration; and (2) data processing and com-
putation.

OODT information integration components include the
Profile Server, responsible for metadata retrieval and re-
source discovery; the Product Server, responsible for data
product delivery; and the Query Server, which combines
the Profile and Product Server to locate data resources, and
then (semi-)automatically package up data and deliver it
back to interested users. We do not focus on these compo-
nents in this paper. We point the interested reader to [9] for
a more complete description.

OODT data processing and retrieval components center
around the Catalog and Archive Service, or CAS compo-
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Figure 2: Schematic representation of projected
DESDynI workflow

nent. CAS provides a file management service for cata-
loging data product metadata, a workflow management ser-

vice for managing jobs that operate on data products made
available by the file manager, and a resource management

service used to allocate workflow jobs onto computational
resources. The core CAS services are depicted in Figure 1.

Several client frameworks communicate with the CAS ser-
vices, including a crawler framework used to automatically
identify and ingest files and metadata into the file man-

agement service; a pushpull service for obtaining remote
content and handing it off to the crawler; and finally a
workflow task wrapper (called CAS-PGE) for allowing work-
flow tasks to leverage and communicate with CAS services
to execute data processing jobs. The unique combination
of CAS services as deployed for a mission has been dubbed
the JPL Process Control System, or PCS architecture [10].
DESDynI would use the PCS to implement its geographi-
cally distributed science data system platform.

3. ARCHITECTURE
In this section we discuss the proposed DESDynI science

data system architecture, focusing on its constituent PCS
components.

3.1 Processing Architecture
It is currently envisioned that the proposed DESDynI mis-

sion would produce 21 different data products during the
processing of the original data feed received from the in-
strument. The overall projected DESDynI data processing
workflow can be schematically divided into 4 separate sub-
workflows, as shown in Figure 2.

The Radar Workflow would generate radar instrument
products (also called Level1 1) and operation support prod-
ucts upon the receipt of raw (also called Level 0) data at
the science data system. The Solid Earth Deformation, Dy-
namics of Ice, and Ecosystem Structure Workflows would
generate Level 2,3, and 4 science products once the appro-
priate radar instrument products have been generated.

Each data product would be generated by a Product Gen-
eration Executable (PGE). A PGE is a set of coordinated
tasks that can be collectively described as reading some in-
put data, running some scientific processing algorithm, and
writing output data. PGEs are combined in sequence or in
parallel to realize the overall data processing workflow(s).

1NASA follows an incremental “level” system to describe its
science data product files. Level 0 is the raw data; Level
1 is spatially/temporally referenced, Level 2 is geophysical
parameters, Level 3 is maps, and Level 4 is models.

Typically higher level products are obtained by processing
one or more lower level products. So in order to run they
must rely on their input products to be available, either be-
cause all PGEs run on the same machine, or because the
necessary products have been transferred to the required lo-
cation.

A critical open question for DESDynI is whether the whole
data processing workflow should be run on a single system
or wether the sub-workflows should be executed on separate
systems that are physically located close to the science teams
for the various disciplines. As described later in this paper,
part of our study attempted to provide an empirical answer
to this question by benchmarking a sample workflow on two
different data processing architectures.

In the next section, we will describe the particular exper-
iments that we performed on the proposed DESDynI data
system architecture.

4. EVALUATION
The overall objectives of our benchmark experiments were

two-fold: first, to study how the PCS software stack can be
deployed flexibly onto a cloud environment (we chose the
Amazon cloud service infrastructure); second, to study the
performance impact of the PCS system in a stand alone
versus a cloud environment configuration. To do so, we
measured the data processing pipeline throughput along two
dimensions: (1) the workflow and (2) the data transfer over-
head when migrating DESDynI’s projected data pipelines to
the cloud.

4.1 Experimental Setup
We decided to use the existing infrastructure and support

services provided by Amazon EC2 services for the projected
DESDynI workflow. This included using the Amazon AWS
EC2 developer toolkit which allowed us to custom build our
own AMI (Amazon Machine Image) and propagate it be-
tween multiple Amazon regions and availability zones. We
started by deploying a pre-built Amazon AMI based on Cen-
tOS 5 64bit. This is a publicly available image that can be
used and customized by any third party group and is pro-
vided by Amazon for unlimited use without licensing fees.
We initially installed a single Amazon EC2 instance based
on the following specifications:

1. Type: m2.4xlarge

2. Memory: 68.4 GB of memory

3. CPU: 26 EC2 Compute Units (8 virtual cores @ 3.25
EC2 Compute Units Each)

4. DISK: 1690 GB of instance local storage (non-EBS)

5. I/O Performance: High

This instance type provided us with enough I/O perfor-
mance to test and deploy the proposed DESDynI software
stack in a distributed topology. Our initial deployment was
performed in the WEST (Nothern California) region which
allowed us to use Internet2 (I2 - CENIC) between JPL and
Amazon EC2 based resources, as shown in the left mid-
dle/upper portion of Figure 3. This default route provided
us with a low latency, high bandwith link which was not
available between NASA JPL and AMAZON EAST (North-
ern Virgina) as shown in the middle-right portion of Figure



Figure 3: Map configuration for experiment

3. We leveraged exisiting tools contained within the Amazon
EC2 developer toolkit to bundle a new private AMI which
contained all of our assumed DESDynI configurations and
our PCS software stack. We then moved our new AMI to
our private Amazon S3 (Simple Storage Service) bucket lo-
cated in AMAZON WEST which provided us with a quick
deployment path.

Unfortunately, the AMI build process is all executed on
the command line, since no Graphical User Interface (GUI)
is provided by Amazon to make the process more user friendly.
On the other hand, the advantage of using the command
line is that we know exactly what is being built, how it is
configured, and how our software is deployed from start to
finish. We also encountered issues with how Amazon segre-
gates regions and availability zones. We noticed that many
things would work in one region but would not work in a
different region such as our AMI, network layout, or Ama-
zon EBS (Elastic Block Storage) mount points. We had to
manually migrate all of these different areas between regions
which was time consuming and the process was not intuitive.
Eventually, after some trial and error, we managed to suc-
cessfully demonstrate that by using Amazon AWS cloud ser-
vices we could easily deploy PCS fully configured and ready
for immediate use. The final product allowed us to deploy
our projected DESDynI workflow in parallel by leveraging
the versatility and power of the cloud.

4.2 Benchmarking the DESDynI Pipeline
As mentioned earlier, the objectives of our study (recall

section 1) were to research the tradeoffs of different possi-
ble architectures for the projected DESDynI data process-
ing pipeline. To this purpose, we conducted an experiment
to benchmark the execution time of a comparable DES-
DynI workflow called ROIPAC. ROIPAC is an Open Source,
repeat-pass SAR interferometry processing software pack-
age. We use ROIPAC to construct a demo workflow com-
posed of four PGEs, which represent a partial path within
the complete projected DESDynI pipeline shown previously
in Figure 2. Each ROIPAC PGE read the input data from
the previous PGE (or the simulated data feed for the first
PGE), executed a real science analysis algorithm (which was
considerably I/O and CPU intensive), and produced a data
product composed of one or more files. We compared the
total execution time for the same number of ROIPAC work-
flows run sequentially on a single Amazon EC2 cloud server
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Figure 4: Architecture of the two topologies used to
benchmark the projected DESDynI ROIPAC work-
flow

to those run on a distributed topology composed of three
identical Amazon EC2 servers, each setup to process a spe-
cific PGE.

The two data processing pipelines for this study were
setup using the CAS-PGE to integrate ROIPAC into the
CAS workflow management service, and then ran using
workflow management service on our Amazon cloud in-
stance. In the first topology (see Figure 4 A), a batch script
was used to submit a workflow composed of the full set
of 4 ROIPAC PGEs to the workflow management service,
which took care of running them sequentially and passing
the generated data products to the file management ser-

vice for indexing and archiving. In the second topology (see
Figure 4 B), processing was distributed across 3 servers, and
on each server the workflow management service was con-
figured to run a different workflow composed of one or two
PGEs only followed by a data transfer task to the next server
in the pipeline. In order to maximize the overall throughput,
special consideration was given to the following two aspects
of the architecture:

1. Minimize the data transfer between servers, so that it
becomes a negligible factor in the overall time cost. By
employing high-speed data transfer protocols such as
GridFTP over a fast network as the internal Amazon
cloud, the PGE on one server executed while the data
output for the next PGE was being transferred from
the previous server in the pipeline.

2. Employ a data product detection and notification ser-
vice, so that the PGE on one server can be started as
soon as its needed input has arrived from the previ-
ous server. Such a service is provided by the crawler

framework which can be setup to monitor ingestion of
data in a given directory, then send a message to the
workflow manager to start execution.

Below, we discuss our experimental setup to evaluate how
different data movement technologies are affected by the
cloud environment. Because of the proposed DESDynI data
volume requirements, the movement of data was another
important area which we turned our attention.



4.3 Benchmarking Data Transfers
In this section, we detail a set of data movement experi-

ments that we performed on the Amazon Elastic Compute
Cloud (EC2) and its Simple Storage Service (S3) cloud com-
puting facilities. Our goal was to evaluate modern data
movement technologies for their potential use in the DES-
DynI science data system. The first step in the study was to
select the data movement technologies that we would eval-
uate. We chose:

FTP – the baseline, most commonly used data transfer pro-
tocol of the past 30 years.

SCP – a secure data transfer protocol based on SSH, used
to baseline our study.

bbFTP – similar to GridFTP, but constructed by CNRS
in France, it is optimized for the transfer of large files.
It leverages a similar strategy to GridFTP in terms of
parallelizing TCP/IP transfers, but it is somewhat eas-
ier to install since it is bundled as a standalone prod-
uct [2].

GridFTP – the flagship data movement product of the
Globus Toolkit, a parallelized, configurable alterna-
tive to FTP that saturates underlying TCP/IP net-
works [3].

UDT – the reliable UDP-based transfer protocol exploits
the UDP protocol (unreliable, asynchronous data de-
livery) to send files around [5].

It should be noted that we considered testing UFTP, but
because of its nature (multicast transfer) the underlining
communication paradigm fits into those applications that
are typically gather/scatter and relatively short-distance. In
our case this technology is not applicable. A preliminary ex-
periment using point-to-point mode immediately eliminated
UFTP from consideration, as the transfer speed was or-
ders of magnitude slower than any other protocol described
above.

Amazon has two main data centers in the U.S. as detailed
earlier and shown in Figure 3. The first step in performing
our transfers was setting up an Amazon image with the nec-
essary data movement software, and then duplicating that
image at AMAZON WEST (B1 & B2 or simply B) and
AMAZON EAST (C), so that we could test transfers from
JPL (A) to B, from A to C and from B to C.

We benchmarked data transfers to and in between cloud
servers using binary NetCDF files [11] of approximately highly
compressed 1 GB and 10 GB sizes. Potential future DES-
DynI missions would likely use either NetCDF files or HDF
equivalent. Thanks to their data format and API-level sim-
ilarity, for the purposes of this experiment they are inter-
changeable.

In general, we noticed that transfer speeds to and in be-
tween cloud servers varies considerably probably because of
the concurrent network use of other projects. When trans-
ferring data within the cloud, explicitly using the EC2 inter-
nal network seemed to consistently give much higher rates
than when generically specifying transfers over a public net-
work. The network used in the transfer was determined by
the choice of public or private IP address for the destination
server.

By nature, this experiment is highly repetitive and some-
times error-prone. As such, we put together a suite of script-
ing tools to assist with the various benchmarks. We also
noted that the majority of setup time revolved around con-
figuring firewall and port security policies. None of the con-
ducted experiments was accompanied by any kernel tuning,
e.g. adjustment of the transfer window or TCP/IP buffer
size. We believe that, while these experiments are samples of
a stock configuration, they are more accurately representa-
tive of a typical science data system user in a cloud-to-cloud
or cluster-to-cloud environment.

5. RESULTS
Overall, the results from our experiment are in line with

our expectations. This section describes our findings and
draws some conclusions on tradeoffs that researchers and de-
velopers should consider when migrating their science data
software to a cloud computing environment.

5.1 DESDynI Pipeline Results
A single ROIPAC workflow composed of 4 PGEs was mea-

sured to take approximately an hour when run on a single
EC2 Amazon server. We measured the total execution time
when a sequence of 5 such ROIPAC workflows were run on
that server, versus the case where they were run on the dis-
tributed topology with data transferred from one server to
another using the internal EC2 network and the GridFTP
protocol [3].

Figure 5: Duration of Roipac PGEs and data trans-
fer tasks, in minutes

Figure 5 reports the average time for the 4 ROIPAC PGEs
and the two transfer tasks. It can be seen that the longest
PGE was the PGE #3, which took approximately 30 min-
utes, and that the two transfer tasks took approximately 3
and 6 minutes from the second and third servers, respec-
tively. It must be noted that the transfer times reported in
this study represent a high-end estimate of what would be
required in a real production environment, because the en-
tire PGE directory tree (input and output) was transferred
to the next server (as opposed to only the files used in the
next PGE).

Figure 6 shows the total execution time for the ROIPAC
workflow when run 5 consecutive times on the standalone
topology (bottom bar in the graph) versus on the distributed
topology (top three bars in the graph, representing the 3



Figure 6: Total time taken by the ROIPAC work-
flow to run 5 consecutive times, in minutes. The
bottom bar reports the total time for 5 runs when
all PGEs are executed as part of a single workflow
on one server (Topology A of Figure 4), the top 3
bars report the time taken to execute the PGEs 5
consecutive times on 3 separate servers (Topology B
of Figure 4)

sub-workflows of the distributed topology). Because on the
distributed topology the PGEs can be run in parallel, the
total elapsed clock time for running the workflow 5 times
with PGEs spread over 3 servers was measured to be 196
minutes (from 20:12 to 23:28), which is considerably lower
than the time measured when all PGEs are run on a single
server: 306 minutes (from 16:31 to 21:37)..

5.2 Data Transfer Benchmark Results
Figures 7 and 8 summarize our findings with respect to

the file transfer benchmark.
For transfer of both file sizes, 1GB and 10GB, the UDT

and GridFTP transfers consistently give best performance
independent of network configuration. FTP and bbFTP
yield the worst transfer performance. Internal network trans-
fer at AWS-West, as expected yields the best performance,
yet external interfaces between two nodes in the same cloud
yields far inferior performance. This observation implies
that geographical proximity alone does not guarantee speed
gain. In some, but not all cases, we see 10x performance
gains when we increase the number of pipes for bbFTP
transfer.

When comparing transfer time between 1GB file and 10GB
files, we observed that transfer time is not necessarily lin-
ear. In some cases, e.g. FTP, the transfer of a larger data
file seemed to give an overall better transfer rate value. We
believe this can be attributed to the streaming nature of the
transfer technology.

Based on our experimental observations, it is clear that if
security and data integrity are to be maximized, GridFTP
gives the best overall performance, though it should be noted
that setting up GridFTP is a fairly involved task, and by far
consumed most of our integration effort with the proposed
DESDynI science data system and with PCS. On the other
hand, if speed and ease of implementation are to be maxi-
mized (at the expense of accompanying middleware infras-
tructure support), UDT is the appropriate choice for data
volumes similar to those of DESDynI-like data systems.

Figure 7: Transfer time (in secs) for 1 GB NetCDF
file

Figure 8: Transfer time (in secs) for 10 GB NetCDF
file



6. CONCLUSION AND FUTURE WORK
NASA’s proposed DESDynI mission is set to produce un-

precedented data volumes (5 TB/day), require compara-
tively large (10s of thousands) numbers of processing jobs
per day, and do so with a geographically distributed archi-
tecture. At NASA’s Jet Propulsion Laboratory, we have un-
dertaken an architectural study to investigate our options for
meeting these stringent Earth Science mission requirements.
Specifically we are evaluating the use of cloud computing
technologies and environments, along with JPL’s PCS data
management software, which is built on the open source
Apache OODT framework, to support DESDynI’s projected
requirements.

In particular, we made use of Amazon AWS cloud services
to assess DESDynI’s proposed distributed architecture, fo-
cusing on a simulated DESDynI workflow called ROIPAC.
We demonstrated that ROIPAC deployed using PCS com-
bined with high-speed data transfer protocols over fast net-
works considerably increases the pipeline data throughput.
In our experiment, the overall clock time of a workflow com-
posed of the 4 ROIPAC PGEs was reduced by a factor of
1/3 when deployed on a distributed server topology. Our
experiments demonstrate that data transfer between cloud
servers did not affect the overall pipeline performance.

Though our early results were positive, a number of inter-
esting questions have arisen. Specifically we are interested
in: (1) evaluating and integrating cloud-aware scheduling
algorithms with the PCS in order to leverage information to
more efficiently deploy projected DESDynI algorithms and
speed up the DESDynI pipeline; (2) furthering the work on
CAS-PGE production rule specifications for DESDynI PGEs
to get a head start on the data system implementation; and
finally (3) generalizing our work to automatically integrate
data transfer technologies in a science data system pipeline.
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